On 2-adic orders of some binomial sums
نویسندگان
چکیده
منابع مشابه
On 2-adic Orders of Some Binomial Sums
We prove that for any nonnegative integers n and r the binomial sum n ∑ k=−n ( 2n n− k ) k is divisible by 22n−min{α(n),α(r)}, where α(n) denotes the number of 1s in the binary expansion of n. This confirms a recent conjecture of Guo and Zeng [J. Number Theory, 130(2010), 172–186]. In 1976 Shapiro [3] introduced the Catalan triangle ( k n ( 2n n−k ) )n>k>1 and determined the sum of entries in t...
متن کاملSome Classes of Alternating Weighted Binomial Sums
In this paper, we consider three classes of generalized alternating weighted binomial sums of the form n ∑ i=0 ( n i ) (−1) f (n, i, k, t) where f (n, i, k, t) will be chosen as UktiVkn−k(t+2)i, UktiVkn−kti and UtkiV(k+1)tn−(k+2)ti. We use the Binet formula and the Newton binomial formula to prove the claimed results. Further we present some interesting examples of our results.
متن کاملA Congruential Identity and the 2-adic Order of Lacunary Sums of Binomial Coefficients
In this paper we obtain a universal lower bound on the 2-adic order of lacunary sums of binomial coefficients. By means of necessary and sufficient conditions, we determine the set of values for which the bound is achieved and show the periodicity of the set. We prove a congruential identity for the corresponding generating function. Our approach gives an alternative and transparent proof for s...
متن کاملSome Binomial Sums Involving Absolute Values
We consider several families of binomial sum identities whose definition involves the absolute value function. In particular, we consider centered double sums of the form
متن کاملOn Sums of Binomial Coefficients
In this paper we study recurrences concerning the combinatorial sum [n r ] m = ∑ k≡r (mod m) (n k ) and the alternate sum ∑ k≡r (mod m)(−1) (n k ) , where m > 0, n > 0 and r are integers. For example, we show that if n > m−1 then b(m−1)/2c ∑ i=0 (−1) (m− 1− i i )[n− 2i r − i ]
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2010
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2010.06.007